
CHAPTER 3 

 

FLUID-FLOW THEORY 

 

 

Many raw materials for foods and many finished foods are in the form of fluids. These fluids 

have to be transported and processed in the factory. Food technologists must be familiar with the 

principles that govern the flow of fluids, and with the machinery and equipment that is used to 

handle fluids. In addition, there is an increasing tendency to handle powdered and granular 

materials in a form in which they behave as fluids. Fluidization, as this is called, has been 

developed because of the relative simplicity of fluid handling compared with the handling of 

solids. 

 

The engineering concept of a fluid is a wider one than that in general use, and it covers gases as 

well as liquids and fluidized solids. This is because liquids and gases obey many of the same 

laws so that it is convenient to group them together under the general heading of fluids. 

 

The study of fluids can be divided into the study of fluids at rest - fluid statics, and the study of 

fluids in motion - fluid dynamics. For some purposes, further subdivision into compressible 

fluids such as gases, and incompressible fluids such as liquids, is necessary. Fluids in the food 

industry vary considerably in their properties. They include such materials as: 

    

                                    Thin liquids - milk, water, fruit juices, 

   Thick liquids - syrups, honey, oil, jam, 

   Gases - air, nitrogen, carbon dioxide, 

   Fluidized solids - grains, flour, peas. 

 

 

FLUID STATICS 

 

 

A very important property of a fluid at rest is the pressure exerted by that fluid on its 

surroundings. 

 

Pressure is defined as force exerted on an area. Under the influence of gravity, a mass of any 

material exerts a force on whatever supports it. The magnitude of this force is equal to the mass 

of the material multiplied by the acceleration due to gravity. The mass of a fluid can be 

calculated by multiplying its volume by its density, which is defined as its mass per unit volume. 

Thus the equation can be written: 

 

     F = mg = Vg 

 

where F is the force exerted, m is the mass, g the acceleration due to gravity,  V the volume and  

(the Greek letter rho) the density. The units of force are Newtons, or kg m s-2, and of pressure 

Pascals, one Pascal being one Newton m-2 and so one Pascal is also one kg m-1 s-2.    

 



For a mass to remain in equilibrium, the force it exerts due to gravity must be resisted by some 

supporting medium. For a weight resting on a table, the table provides the supporting reaction; 

for a multi-storey building, the upper floors must be supported by the lower ones so that as you 

descend the building the burden on the floors increases until the foundations support the whole 

building. In a fluid, the same situation applies. Lower levels of the fluid must provide the support 

for the fluid that lies above them. The fluid at any point must support the fluid above. Also, since 

fluids at rest are not able to sustain shearing forces, which are forces tending to move adjacent 

layers in the fluid relative to one another, it can be shown that the forces at any point in a fluid at 

rest are equal in all directions. The force per unit area in a fluid is called the fluid pressure. It is 

exerted equally in all directions. 

 

Consider a horizontal plane in a fluid at a depth Z below the surface, as illustrated in Fig. 3.1. 

                                

 
Figure 3.1 Pressure in a fluid 

 

 

If the density of the fluid is , then the volume of fluid lying above an area A on the plane is ZA 

and the weight of this volume of fluid, which creates a force exerted by it on the area A which 

supports it, is ZAg. But the total force on the area A must also include any additional force on 

the surface of the liquid. If the force on the surface is Ps per unit area, 

  

 F = APs + ZAg       (3.1) 

 

where F is the total force exerted on the area A and Ps  is the pressure above the surface of the 

fluid (e.g. it might be atmospheric pressure). Further, since total pressure P is the total force per 

unit area: 

 

 P = F/A =Ps + Zg       (3.2) 

 



In general, we are interested in pressures above or below atmospheric. If referred to zero 

pressure as datum, the pressure of the atmosphere must be taken into account. Otherwise the 

atmospheric pressure represents a datum or reference level from which pressures are measured. 

In these circumstances we can write 

 

 P = Zg       (3.3) 

 

This may be considered as the fundamental equation of fluid pressure. It states that the product 

of the density of the fluid, acceleration due to gravity and the depth gives the pressure at any 

depth in a fluid. 

 

EXAMPLE 3.1. Total pressure in a tank of peanut oil 

Calculate the greatest pressure in a spherical tank, of 2m diameter, filled with peanut oil of 

specific gravity 0.92, if the pressure measured at the highest point in the tank is 70 kPa. 

   

                      Density of water  = 1000kgm-3 

  Density of oil  = 0.92 x l000kgm-3  = 920kgm-3 

   Z    = greatest depth   = 2 m 

   and g     =  9.81ms-2 

Now      P = Zg   

              = 2 x 920 x 9.81 kgm-1s-2 

                  = 18,050Pa  

     = 18.1kPa. 

 

To this must be added the pressure at the surface of 70kPa. 

 

    Total pressure = 70 + 18.1  = 88.1 kPa. 

 

Note in Example 3.1, the pressure depends upon the pressure at the top of the tank added to the 

pressure due to the depth of the liquid; the fact that the tank is spherical (or any other shape) 

makes no difference to the pressure at the bottom of the tank. 

 

In the previous paragraph, we established that the pressure at a point in a liquid of a given 

density is solely dependent on the density of the liquid and on the height of the liquid above the 

point, plus any pressure which may exist at the surface of the liquid. When the depths of the fluid 

are substantial, fluid pressures can be considerable. For example, the pressure on a plate 1 m2 

lying at a depth of 30 m will be the weight of 1 m3 of water multiplied by the depth of 30 m and 

this will amount to 30 x 1000 x 9.81 = 294.3 kPa. As 1 tonne exerts a force on 1m2 of 1000 x 

9.81 = 9810Pa = 9.81 kPa the pressure on the plate is equal to that of a weight of 294.3 / 9.81 = 

30 tonnes of water. 

 

Pressures are sometimes quoted as absolute pressures and this means the total pressure 

including atmospheric pressure. More usually, pressures are given as gauge pressures, which 

implies the pressure above atmospheric pressure as datum. For example, if the absolute pressure 

is given as 350 kPa, the gauge pressure is (350 - 100) = 250 kPa assuming that the atmospheric 

pressure is 100 kPa. These pressure conversions are illustrated in Fig. 3.2. 



 



 
Figure 3.2 Pressure conversions 

 

 

Standard atmospheric pressure is actually 101.3kPa but for our practical purposes l00kPa is 

sufficiently close and most convenient to use. Any necessary adjustment can easily be made. 

 

Another commonly used method of expressing pressures is in terms of "head" of a particular 

fluid. From eqn. (3.3) it can be seen that there is a definite relationship between pressure and 

depth in a fluid of given density. Thus pressures can be expressed in terms of depths, or heads as 

they are usually called, of a given fluid. The two fluids most commonly used, when expressing 

pressures in this way, are water and mercury. The main reason for this method of expressing 

pressures is that the pressures themselves are often measured by observing the height of the 

column of liquid that the pressure can support. It is straightforward to convert pressures 

expressed in terms of liquid heads to equivalent values in kPa by the use of eqn. (3.3.). 

 

EXAMPLE 3.2. Head of Water 

Calculate the head of water equivalent to standard atmospheric pressure of 100 kPa. 

 

  Density of water  = 1000 kg m-3 

                       g    = 9.81ms-2 

           and pressure   = 100 kPa 

              = 100 x 103Pa  

      = 100 x 103 kgm-1s-2 

but from eqn. (3.3)   Z   = P/g 

      = (100 x 103)/ (1000 x 9.81) 

      =  l0.5m 

 

EXAMPLE 3.3. Head of mercury  

Calculate the head of mercury equivalent to a pressure of two atmospheres. 



 

 Density of mercury   = 13,600kgm-3  

                  Z     = (2 x 100 x 103)/ (13,600 x 9.81) 

                           = 1.5m 

 

 

FLUID DYNAMICS 

 

 

In most processes fluids have to be moved so that the study of fluids in motion is important. 

Problems on the flow of fluids are solved by applying the principles of conservation of mass and 

energy. In any system, or in any part of any system, it must always be possible to write a mass 

balance and an energy balance. The motion of fluids can be described by writing appropriate 

mass and energy balances and these are the bases for the design of fluid handling equipment. 

 

 

Mass Balance 

 

Consider part of a flow system, such for example as that shown in Fig. 3.3. This consists of a 

continuous pipe that changes its diameter, passing into and out of a unit of processing plant, 

which is represented by a tank. The processing equipment might be, for example, a pasteurizing 

heat exchanger. Also in the system is a pump to provide the energy to move the fluid. 

  

 

 

 
Figure 3.3. Mass and energy balance in fluid flow. 

    (note: units for Ec and Ef are Jkg-1 ) 

 

 

In the flow system of Fig. 3.3 we can apply the law of conservation of mass to obtain a mass 

balance. Once the system is working steadily, and if there is no accumulation of fluid in any part 

the system, the quantity of fluid that goes in at section 1 must come out at section 2. If the area of 

the pipe at section 1 is A1, the velocity at this section, v1 and the fluid density 1, and if the 

corresponding values at section 2 are A2, V2, 2 the mass balance can be expressed as 

 



 1A1v1 = 2A2v2       (3.4) 

 

If the fluid is incompressible 1 = 2   

so in this case  

 A1v1 = A2v2       (3.5) 

 

Equation (3.5) is known as the continuity equation for liquids and is frequently used in solving 

flow problems. It can also be used in many cases of gas flow in which the change in pressure is 

very small compared with the system pressure, such as in many air-ducting systems, without any 

serious error. 

 

EXAMPLE 3.4. Velocities of flow 

Whole milk is flowing into a centrifuge through a full 5cm diameter pipe at a velocity of 0.22 

ms-1, and in the centrifuge it is separated into cream of specific gravity 1.01 and skim milk of 

specific gravity 1.04. Calculate the velocities of flow of milk and of the cream if they are 

discharged through 2cm diameter pipes. The specific gravity of whole milk is 1.035. 

 

From eqn. (3.4) 

 

 1A1v1  = 2A2v2 + 3A3v3 

 

where suffixes 1, 2, 3 denote respectively raw milk, skim milk and cream. Also, since volumes 

will be conserved, the total leaving volumes will equal the total entering volume and so 

 A1v1 = A2v2 + A3v3 and from this equation 

   

 v2  = (A1v1 - A3v3)/A2   (a) 

 

This expression can be substituted for v2 in the mass balance equation to give: 

 1A1v1  = 2A2(A1v1 – A3v3)/A2  + 3A3v3 

 1A1v1  = 2A1v1  - 2A3v3 + 3A3v3. 

 

So A1v1(1 - 2) = A3v3(3 - 2)   (b) 

 

From the known facts of the problem we have: 

 

  A1  = (/4) x (0.05)2 = 1.96 x 10-3m2 

 

  A2 = A3 = (/4) x (0.02)2  = 3.14 x 10-4m2 

   v1 =  0.22ms-1 

   1 = 1.035 x w ,  2 = 1.04 x w ,  3 = 1.01x w 

 

where w is the density of water. 

 

Substituting these values in eqn. (b) above we obtain: 

 

   -1.96 x 10–3 x 0.22 (0.005) = -3.14 x 10-4x v3 x (0.03) 



      

             so       v3 = 0.23ms-1 

 

Also from eqn. (a) we then have, substituting 0.23ms -1 for v3, 

 

               v2 = [(1.96 x 10-3 x 0.22) - (3.14 x 10 –4 x 0.23)] / 3.14 x 10-4  

                   

   = 1.1ms-1 

 

 

Energy Balance 

 

In addition to the mass balance, the other important quantity we must consider in the analysis of 

fluid flow, is the energy balance. Referring again to Fig. 3.3, we shall consider the changes in the 

total energy of unit mass of fluid, one kilogram, between section 1 and section 2. 

 

Firstly, there are the changes in the intrinsic energy of the fluid itself which include changes in: 

 (1) Potential energy. 

 (2) Kinetic energy. 

 (3) Pressure energy. 

Secondly, there may be energy interchange with the surroundings including: 

 (4) Energy lost to the surroundings due to friction. 

 (5) Mechanical energy added by pumps. 

 (6) Heat energy in heating or cooling the fluid. 

In the analysis of the energy balance, it must be remembered that energies are normally 

measured from a datum or reference level. Datum levels may be selected arbitrarily, but in most 

cases the choice of a convenient datum can be made readily with regard to the circumstances. 

 

Potential energy 

 

Fluid maintained above the datum level can perform work in returning to the datum level. The 

quantity of work it can perform is calculated from the product of the distance moved and the 

force resisting movement; in this case the force of gravity. This quantity of work is called the 

potential energy of the fluid. Thus the potential energy of 1 kg of fluid at a height of Z(m) above 

its datum is given by Ep, where: 

 

      Ep =Zg (J) 

 

Kinetic energy 

 

Fluid that is in motion can perform work in coming to rest. This is equal to the work required to 

bring a body from rest up to the same velocity, which can be calculated from the basic equation 

 

  v2 = 2as,  therefore s =  v2/2a, 

 



where v (ms–1) is the final velocity of the body, a (ms-2) is the acceleration and s (m) is the 

distance the body has moved. 

 

Also work done = W    = F x s, and from Newton's Second Law, for m kg of fluid 

 

  F = ma                          

 

and so  Ek = W =  mas  =  mav2/2a 

       = mv2/2 

 

The energy of motion, or kinetic energy, for 1 kg of fluid is therefore given by Ek where  

                        

                       Ek  = v2/2 (J) 

 

Pressure energy 

 

Fluids exert a pressure on their surroundings. If the volume of a fluid is decreased, the pressure 

exerts a force that must be overcome and so work must be done in compressing the fluid. 

Conversely, fluids under pressure can do work as the pressure is released. If the fluid is 

considered as being in a cylinder of cross-sectional area A(m2) and a piston is moved a distance L 

(m) by the fluid against the pressure P (Pa) the work done is PAL joules. The quantity of the 

fluid performing this work is AL (kg).  Therefore the pressure energy that can be obtained from 

1 kg of fluid (that is the work that can be done by this kg of fluid) is given by Er where 

 

  Er = PAL / AL 

      = P/ (J) 

 

Friction loss 

 

When a fluid moves through a pipe or through fittings, it encounters frictional resistance and 

energy can only come from energy contained in the fluid and so frictional losses provide a drain 

on the energy resources of the fluid. The actual magnitude of the losses depends upon the nature 

of the flow and of the system through which the flow takes place. In the system of Fig. 3.3, let 

the energy lost by 1 kg fluid between section 1 and section 2, due to friction, be equal to Ef (J). 

 

Mechanical energy 

 

If there is a machine putting energy into the fluid stream, such as a pump as in the system of Fig. 

3.3, the mechanical energy added by the pump per kg of fluid must be taken into account. Let the 

pump energy added to 1 kg fluid be Ec (J). In some cases a machine may extract energy from the 

fluid, such as in the case of a water turbine. 

 

Other effects 

 

Heat might be added or subtracted in heating or cooling processes, in which case the mechanical 

equivalent of this heat would require to be included in the balance. Compressibility terms might 



also occur, particularly with gases, but when dealing with low pressures only they can usually be 

ignored. 

 

For the present let us assume that the only energy terms to be considered are Ep, Ek, Er, Ef, Ec. 

 

 

Bernouilli's Equation 

 

We are now in a position to write the energy balance for the fluid between section 1 and section 

2 of Fig. 3.3. The total energy of one kg of fluid entering at section 1 is equal to the total energy 

of one kg of fluid leaving at section 2, less the energy added by the pump, plus friction energy 

lost in travelling between the two sections. Using the subscripts 1 and 2 to denote conditions at 

section 1 or section 2, respectively, we can write 

 

  Ep1 + Ek1 + Er1 = Ep2 + Ek2 + Er2 + Ef  -Ec.    (3.6.)  

                             

         Therefore Z1g + v1
2/2 + P1/1  = Z2g + v2

2/2  + P2 /2 + Ef – Ec.         (3.7) 

 

In the special case where no mechanical energy is added and for a frictionless fluid,  

  Ec = Ef = 0, and we have 

 

  Z1 g + v1
2/2 + P1 /1 = Z2 g + v2

2
 /2 + P2 /2    (3.8) 

 

and since this is true for any sections of the pipe the equation can also be written 

 

  Zg + v2/2 + P/ = k               (3.9) 

where k is a constant. 

 

Equation (3.9) is known as Bernouilli's equation. First discovered by the Swiss mathematician 

Bernouilli in 1738, it is one of the foundations of fluid mechanics. It is a mathematical 

expression, for fluid flow, of the principle of conservation of energy and it covers many 

situations of practical importance. 

 

Application of the equations of continuity, eqn. (3.4) or eqn. (3.5), which represent the mass 

balance, and eqn. (3.7) or eqn. (3.9), which represent the energy balance, are the basis for the 

solution of many flow problems for fluids. In fact much of the remainder of this chapter will be 

concerned with applying one or another aspect of these equations. 

 

The Bernouilli equation is of sufficient importance to deserve some further discussion. In the 

form in which it has been written in eqn. (3.9) it will be noticed that the various quantities are in 

terms of energies per unit mass of the fluid flowing. If the density of the fluid flowing multiplies 

both sides of the equation, then we have pressure terms and the equation becomes: 

   

  Zg + v2/2 + P = k'       (3.10) 

 

and the respective terms are known as the potential head pressure, the velocity pressure and the 



static pressure. 

 

On the other hand, if the equation is divided by the acceleration due to gravity, g, then we have 

an expression in terms of the head of the fluid flowing and the equation becomes: 

 

  Z + v2/2g + P/g  = k''       (3.11) 

 

and the respective terms are known as the potential head, the velocity head and the pressure 

head. The most convenient form for the equation is chosen for each particular case, but it is 

important to be consistent having made a choice. 

 

If there is a constriction in a pipe and the static pressures are measured upstream or downstream 

of the constriction and in the constriction itself, then the Bernouilli equation can be used to 

calculate the rate of flow of the fluid in the pipe. This assumes that the flow areas of the pipe and 

in the constriction are known. Consider the case in which a fluid is flowing through a horizontal 

pipe of cross-sectional area A1 and then it passes to a section of the pipe in which the area is 

reduced to A2. From the continuity equation [eqn. (3.5)] assuming that the fluid is 

incompressible: 

 

    A1v1 = A2v2 

and so 

    v2  = v1A1 /A2 

 

Since the pipe is horizontal 

 

  Z1 = Z2 

Substituting in eqn. (3.8) 

 

 v1 
2
 /2 + P1 /1  =  v1 

2
 A1

2
 /(2 A2

2) + P2 /2 

 

and since 1 = 2 as it is the same fluid throughout and it is incompressible, 

 

    P1 - P2  = 1 v1 
2[(A1

2
 /A2

2) –1]/2      (3.12) 

 

From eqn. (3.12), knowing P1, P2, A1, A2, 1, the unknown velocity in the pipe, v1, can be 

calculated. 

 

Another application of the Bernouilli equation is to calculate the rate of flow from a nozzle with 

a known pressure differential. Consider a nozzle placed in the side of a tank in which the surface 

of the fluid in the tank is Z ft above the centre line of the nozzle as illustrated in Fig. 3.4. 

 

 

 



 

Figure 3.4. Flow from a nozzle. 

 

Take the datum as the centre of the nozzle. The velocity of the fluid entering the nozzle is 

approximately zero, as the tank is large compared with the nozzle. The pressure of the fluid 

entering the nozzle is P1 and the density of the fluid 1. The velocity of the fluid flowing from 

the nozzle is v2 and the pressure at the nozzle exit is 0 as the nozzle is discharging into air at the 

datum pressure. There is no change in potential energy as the fluid enters and leaves the nozzle at 

the same level. Writing the Bernouilli equation for fluid passing through the nozzle: 

 

          0 + 0 + P1 /1  = 0 + v2
2/2 + 0 

                                                 v2
2   = 2 P1 /1 

                                                              _______  

                  v2     =  (2P1 /1 ) 

 

   but from Equation 3.3 

 

                                              P1 / 1 = gZ 

 

    (where Z is the head of fluid above the nozzle) 

                                                                 ____  

                        therefore             v2    =  (2 gZ)       (3.13) 

 

EXAMPLE 3.5. Pressure in a pipe 

Water flows at the rate of 0.4m3 min-1 in a 7.5cm diameter pipe at a pressure of 70 kPa. If the 

pipe reduces to 5cm diameter calculate the new pressure in the pipe.  

 

Density of water is l000kgm -3. 

  Flow rate of water = 0.4 m3 min -1   = 0.4/60 m3 s-1. 

 

  Area of 7.5cm diameter pipe    = (/4)D2 



       = (/4)(0.075)2 

        = 4.42 x 10-3m2. 

So velocity of flow in 7.5cm diameter pipe, 

 v1  = (0.4/60)/(4.42 x 10-3)  = 1.51 ms-1 

 

                     Area of 5-cm diameter pipe      =  (/4)(0.05)2 

                                                                       = 1.96 x 10-3 m2 

 

 and so velocity of flow in 5cm diameter pipe, 

   v2  =  (0.4/60)/(1.96 x 10-3) =  3.4 m s-1 

 

Now 

                    Z1g + v1
2/2 + P1 /1    = Z2g + v2

2
 /2 + P2/2 

   

and so 0 + (1.51)2/2 + 70 x 103/1000  = 0 + (3.4)2/2 + P2/1000  

          0 + 1.1 + 70  = 0 + 5.8 + P2/1000 

               P2 /1000  = (71.1 - 5.8)   =  65.3 

      P2 =  65.3kPa 

 

EXAMPLE 3.6. Flow rate of olive oil 

Olive oil of specific gravity 0.92 is flowing in a pipe of 2cm diameter. Calculate the flow rate of 

the olive oil, if an orifice constriction is placed in the pipe so that the diameter of the pipe in the 

constriction is reduced to 1.2cm, and if the measured pressure difference between the clear pipe 

and the most constricted part of the pipe is 8cm of water. 

Diameter of pipe, in clear section, equals 2cm and at constriction equals 1.2cm. 

 

                        A1/A2 = (D1/D2)
 2  = (2/1.2) 2 

          Differential head  = 8 cm water. 

                   Differential pressure = Zg 

         = 0.08 x 1000 x 9.81  

     = 785 Pa. 

substituting in eqn. (3.12)  P1 - P2   = 1 v1 
2[(A1

2
 /A2

2 ) –1]/2 

 

    785  = 0.92 x 1000 x v2 [(2/1.2)4 - 1 ] /2  

   

    v2 = 785/3091 

                                    v  = 0.5ms-1 

 

EXAMPLE 3.7. Mass flow rate from a tank 

The level of water in a storage tank is 4.7m above the exit pipe. The tank is at atmospheric 

pressure and the exit pipe discharges into the air. If the diameter of the exit pipe is 1.2cm what is 

the mass rate of flow through this pipe? 

 

From eqn. (3.13)                                                    

   v =  (2gZ)   

      =  (2 x 9.81 x 4.7) 



             =   9.6ms-1 

Now area of pipe 

 

                            A  = (/4)D2       

                                                = (/4) x (0.012)2 

                                       =  1.13 x 10-4m2  

Volumetric flow rate, Av  = 1.13 x 10-4m2 x 9.6ms-1 

       = 1.13 x 10-4 x 9.6m3s-1 

      =  1.08 x 10-3 m3s-1                            

Mass flow rate,  Av  = 1000 kgm-3 x 1.08 x 10-3m3s-1 

       = 1.08kgs-1 

 

EXAMPLE 3.8. Pump horsepower 

Water is raised from a reservoir up 35m to a storage tank through a 7.5cm diameter pipe. If it is 

required to raise 1.6 cubic metres of water per minute, calculate the horsepower input to a pump 

assuming that the pump is 100% efficient and that there is no friction loss in the pipe.  

1 Horsepower = 0.746 kW. 

 

Volume of flow  

 V  = 1.6m3min-1 = 1.6/60m3s-1   = 2.7 x 10-2m3s-1 

Area of pipe, 

 A     = (/4) x (0.075)2   = 4.42 x 10-3m2 

 

Velocity in pipe           

 v  = 2.7 x 10-2/(4.42 x 10-3)   = 6ms-1 

 

And the mechanical energy  = potential energy + kinetic energy 

 Ec            = Zg + v2/2 

                 = 35 x 9.81 + 62/2 

                 = 343.4 + 18 

      = 361.4Jkg-1 

 

Therefore total power required  = Ec x mass rate of flow 

      = EcV    

       = 361.4 x 2.7 x 10-2 x 1000Js-1  

       =  9758 Js-1 

and, since     l h.p.      = 0.746kW  = 7.46 x 102Js -1, 

        required power   =  13  h.p. 

 

 

VISCOSITY 

 

 

Viscosity is that property of a fluid that gives rise to forces that resist the relative movement of 

adjacent layers in the fluid. Viscous forces are of the same character as shear forces in solids and 

they arise from forces that exist between the molecules. 



 

If two parallel plane elements in a fluid are moving relative to one another, it is found that a 

steady force must be applied to maintain a constant relative speed. This force is called the 

viscous drag because it arises from the action of viscous forces. Consider the system shown in 

Fig. 3.5. 

 

 
Figure 3.5. Viscous forces in a fluid. 

 

 

If the plane elements are at a distance Z apart, and if their relative velocity is v, then the force F 

required to maintain the motion has been found, experimentally, to be proportional to v and 

inversely proportional to Z for many fluids. The coefficient of proportionality is called the 

viscosity of the fluid, and it is denoted by the symbol µ (mu). 

 

From the definition of viscosity we can write 

 

 F/A = µv/Z       (3.14) 

 

where F is the force applied, A is the area over which force is applied, Z is the distance between 

planes, v is the velocity of the planes relative to one another, and µ is the viscosity. 

 

By rearranging the eqn. (3.14), the dimensions of viscosity can be found. 

 

  [µ] =  FZ   =      [F][L][t]    =    [F][t]       =    [M][L] x  [t] 

                                       Av       [L2][L]            [L]2                         [t2] [L]2 

                                             

               = [M][L]-1[t]-1   

 

There is some ambivalence about the writing and the naming of the unit of viscosity; there is no 

doubt about the unit itself which is the Nsm-2, which is also the Pascal second, Pa s, and it can be 

converted to mass units using the basic mass/force equation. The older units, the poise and its 

sub-unit the centipoise(cP) seem to be obsolete, although the conversion is simple with 10 poises 



or 1000 centipoises being equal to 1 Nsm-2. The new unit is rather large for many liquids, the 

viscosity of water at room temperature being around 1 x 10-3 Nsm-2, and for comparison, at the 

same temperature, the approximate viscosities of other liquids are acetone, 0.3 x 10-3 Nsm-2; a 

tomato pulp, 3 x 10-3; olive oil, 100 x 10-3; and molasses 7000Nsm-2.  

 

Viscosity is very dependent on temperature decreasing sharply as the temperature rises. For 

example, the viscosity of golden syrup is about 100Nsm-2 at 16oC, 40 at 22oC and 20 at 25oC. 

Care should be taken not to confuse viscosity µ as defined in eqn. (3.14) which strictly is called 

the dynamic or absolute viscosity, with µ/ which is called the kinematic viscosity and given 

another symbol. In technical literature, viscosities are often given in terms of units that are 

derived from the equipment used to measure the viscosities experimentally. The fluid is passed 

through some form of capillary tube or constriction and the time for a given quantity to pass 

through is taken and can be related to the viscosity of the fluid. Tables are available to convert 

these arbitrary units, such as "Saybolt Seconds" or "Redwood Seconds", to poises. 

 

The viscous properties of many of the fluids and plastic materials that must be handled in food-

processing operations are more complex than can be expressed in terms of one simple number 

such as a coefficient of viscosity. 

 

 

Newtonian and Non-Newtonian Fluids 

 

From the fundamental definition of viscosity in eqn. (3.14) we can write: 

 

  F/A = µv /Z =   µ (dv/dz)  =  

 

where  (tau) is called the shear stress in the fluid. This is an equation originally proposed by 

Newton and which is obeyed by fluids such as water. However, for many of the actual fluids 

encountered in the food industry, measurements show deviations from this simple relationship, 

and lead towards a more general equation: 

 

        = k(dv/dz )n       (3.15) 

 

which can be called the power-law equation, and where k is a constant of proportionality. 

 

Where n = 1, the fluids are called Newtonian because they conform to Newton's equation (3.14) 

and k = µ; and all other fluids may therefore be called non-Newtonian. Non-Newtonian fluids 

are varied and are studied under the heading of rheology, which is a substantial subject in itself 

and the subject of many books. Broadly, the non-Newtonian fluids can be divided into: 

 

(1) Those in which n < 1. As shown in Fig. 3.6 these produce a concave downward curve and for 

them the viscosity is apparently high under low shear forces decreasing as the shear force 

increases. Such fluids are called pseudoplastic, an example being tomato puree. In more 

extreme cases where the shear forces are low there may be no flow at all until a yield stress is 

reached after which flow occurs, and these fluids are called thixotropic. 

 



(2) Those in which n >1.  With a low apparent viscosity under low shear stresses, they become 

more viscous as the shear rate rises. This is called dilatancy and examples are gritty slurries 

such as crystallized sugar solutions. Again there is a more extreme condition with a zero 

apparent viscosity under low shear and such materials are called rheopectic. Bingham fluids 

have to exceed a particular stress level before they start to move 

 

 

Figure 3.6. Shear stress/shear rate relationships in liquids. 

 

 

In many instances in practice non-Newtonian characteristics are important, and they become 

obvious when materials that it is thought ought to pump quite easily just do not. They get stuck 

in the pipes, or overload the pumps, or need specially designed fittings before they can be 

moved. Sometimes it is sufficient just to be aware of the general classes of behaviour of such 

materials. In other cases it may be necessary to determine experimentally the rheological 

properties of the material so that equipment and processes can be adequately designed. For 

further details see, for example, Charm (1971), Steffe (2000). 

 

 

STREAMLINE AND TURBULENT FLOW 

 

 

When a liquid flowing in a pipe is observed carefully, it will be seen that the pattern of flow 

becomes more disturbed as the velocity of flow increases. Perhaps this phenomenon is more 

commonly seen in a river or stream. When the flow is slow the pattern is smooth, but when the 



flow is more rapid, eddies develop and swirl in all directions and at all angles to the general line 

of flow. 

 

At the low velocities, flow is calm. In a series of experiments, Reynolds showed this by injecting 

a thin stream of dye into the fluid and finding that it ran in a smooth stream in the direction of the 

flow. As the velocity of flow increased, he found that the smooth line of dye was broken up until 

finally, at high velocities, the dye was rapidly mixed into the disturbed flow of the surrounding 

fluid. From analysis, which was based on these observations, Reynolds concluded that this 

instability of flow could be predicted in terms of the relative magnitudes of the velocity and the 

viscous forces that act on the fluid. In fact the instability which leads to disturbed, or what is 

called "turbulent" flow, is governed by the ratio of the kinetic and the viscous forces in the fluid 

stream. The kinetic (inertial) forces tend to maintain the flow in its general direction, but as they 

increase so does instability, whereas the viscous forces tend to retard this motion and to preserve 

order and reduce eddies. 

 

The inertial force is proportional to the velocity pressure of the fluid v2 and the viscous drag is 

proportional to µv/D where D is the diameter of the pipe. The ratio of these forces is: 

 

  v2D/µv  = Dv/µ 

 

This ratio is very important in the study of fluid flow. As it is a ratio, it is dimensionless and so it 

is numerically independent of the units of measurement so long as these are consistent. It is 

called the Reynolds number and is denoted by the symbol (Re). 

 

From a host of experimental measurements on fluid flow in pipes, it has been found that the flow 

remains calm or "streamline" for values of the Reynolds number up to about 2100. For values 

above 4000 the flow has been found to be turbulent. Between approximately 2100 and 4000 the 

flow pattern is unstable; any slight disturbance tends to upset the pattern but if there is no 

disturbance, streamline flow can be maintained in this region. 

 

To summarise for flow in pipes: 

  

  For (Re)  < 2100 streamline flow, 

  For 2100 < (Re)  <4000 transition, 

  For (Re)  > 4000 turbulent flow. 

 

EXAMPLE 3.9.  Flow of milk in a pipe 

Milk is flowing at 0.12 m3min-1 in a 2.5-cm diameter pipe. If the temperature of the milk is 21oC, 

is the flow turbulent or streamline? 

 

 Viscosity of milk at 21oC = 2.1 cP = 2.10 x 10-3 N s m-2 

 Density of milk at 21oC  = 1029 kgm-3 

 Diameter of pipe  = 0.025 m 

 Cross-sectional area of pipe  = (/4)D2 

     = /4 x (0.025)2 

     = 4.9 x 10-4m2 



 Rate of flow   = 0.12m3min-1 

     = (0.12/60) m3s-1 

     = 2 x 10-3 m3s-1 

    So velocity of flow  =(2 x 10-3)/(4.9 x 10-4) 

     = 4.1 ms-1 

  and so   (Re)  =   (Dv/µ) 

                                      =  0.025 x 4.1 x 1029/(2.1 x 10-3) 

    =  50,230 
 and this is greater than 4000 so that the flow is turbulent. 

 

As (Re) is a dimensionless ratio, its numerical value will be the same whatever consistent units 

are used. However, it is important that consistent units be used throughout, for example the SI 

system of units as are used in this book. If for example, cm were used instead of m just in the 

diameter (or length) term only, then the value of (Re) so calculated would be greater by a factor 

of 10. This would make nonsense of any deductions from a particular numerical value of (Re). 

On the other hand, if all of the length terms in (Re) and this includes not only D but also v (ms-1),  

(kgm-3) and µ(Nsm-2) are in cm then the correct value of (Re) will be obtained. It is convenient, 

but not necessary to have one system of units such as SI. It is necessary, however, to be 

consistent throughout. 

 

 

ENERGY LOSSES IN FLOW 

 

 

Energy losses can occur through friction in pipes, bends and fittings, and in equipment. 

 

 

Friction in Pipes 

 

In Bernouilli's equation the symbol Ef was used to denote the energy loss due to friction in the 

pipe. This loss of energy due to friction was shown, both theoretically and experimentally, to be 

related to the Reynolds number for the flow. It has also been found to be proportional to the 

velocity pressure of the fluid and to a factor related to the smoothness of the surface over which 

the fluid is flowing. 

 

If we define the wall friction in terms of velocity pressure of the fluid flowing, we can write: 

 

 F/A =fv2/2       (3.16) 

 

where F is the friction force, A is the area over which the friction force acts,  is the density of 

the fluid, v is the velocity of the fluid, and f is a coefficient called the friction factor. 

 

Consider an energy balance over a differential length, dL, of a straight horizontal pipe of 

diameter D, as in Fig. 3.7. 

 



 
Figure 3.7. Energy balance over a length of pipe. 

 

 

Consider the equilibrium of the element of fluid in the length dL. The total force required to 

overcome friction drag must be supplied by a pressure force giving rise to a pressure drop dP 

along the length dL. 

 

The pressure drop force is: 

                dP x Area of pipe                                   = dP x D2 /4  

The friction force is: 

 (force/unit area) x wall area of pipe = F/A x D x dL   

so from eqn. (3.16),                               = (fv2/2) x D x dL 

 

Therefore equating pressure drop force and friction force 

 

                                               (D2/4) dP = (fv2/2) x D x dL, 

 

therefore                                                            dP = 4(fv2/2) x dL/D 

 

Integrating between L1 and L2, in which interval P goes from P1 to P2 we have:   

 

              dP = 4(fv2/2) x dL/D 

 

                P1  - P2   = (4fv2/2)(L1 - L2)/D 

 

i.e.   ΔPf   = (4fv2/2) x (L/D)                                            (3.17)  

 

or     Ef           = ΔPf /  = (2fv2)(L/D)    

 

where L = L1 - L2 = length of pipe in which the pressure drop, ΔPf = P1 – P2  is the frictional 

pressure drop, and Ef is the frictional loss of energy. 

 

Equation (3.17) is an important equation; it is known as the Fanning equation, or sometimes the 

D'Arcy or the Fanning-D'Arcy equation. It is used to calculate the pressure drop that occurs 

when liquids flow in pipes. 

 

The factor f in eqn.(3.17) depends upon the Reynolds number for the flow, and upon the 

roughness of the pipe. In Fig. 3.8 experimental results are plotted, showing the relationship of 

these factors. If the Reynolds number and the roughness factor are known, then f can be read off 

from the graph. 



                     

 

Figure 3.8 Friction factors in pipe flow 

  (after Moody 1944) 

 

It has not been found possible to find a simple expression that gives analytical equations for the 

curve of Fig. 3.8, although the curve can be approximated by straight lines covering portions of 

the range. Equations can be written for these lines. Some writers use values for f which differ 

from that defined in eqn. (3.16) by numerical factors of 2 or 4. The same symbol, f, is used so 

that when reading off values for f, its definition in the particular context should always be 

checked. For example, a new f = 4 f removes one numerical factor from eqn. (3.17). 

 

Inspection of Fig. 3.8 shows that for low values of (Re), there appears to be a simple relationship 

between f and (Re) independent of the roughness of the pipe. This is perhaps not surprising, as in 

streamline flow there is assumed to be a stationary boundary layer at the wall and if this is 

stationary there would be no liquid movement over any roughness that might appear at the wall. 

Actually, the friction factor f in streamline flow can be predicted theoretically from the Hagen-

Poiseuille equation, which gives: 

 

               f  =  16/(Re)       (3.18) 

 

and this applies in the region 0 < (Re) <2100. 

 

In a similar way, theoretical work has led to equations which fit other regions of the 

experimental curve, for example the Blasius equation which applies to smooth pipes in the range 

3000 < (Re) < 100,000 and in which: 



 

                f  =  0.316 ( Re)-0.25      (3.19) 

                                       4                              

 

In the turbulent region, a number of curves are shown in Fig. 3.8. It would be expected that in 

this region, the smooth pipes would give rise to lower friction factors than rough ones. The 

roughness can be expressed in terms of a roughness ratio that is defined as the ratio of average 

height of the projections, which make up the "roughness" on the wall of the pipe, to the pipe 

diameter. Tabulated values are given showing the roughness factors for the various types of pipe, 

based on the results of Moody (1944). These factors  are then divided by the pipe diameter D to 

give the roughness ratio to be used with the Moody graph. The question of relative roughness of 

the pipe is under some circumstances a difficult one to resolve. In most cases, reasonable 

accuracy can be obtained by applying Table 3.1 and Fig. 3.8. 

 

 

TABLE 3.1 

RELATIVE ROUGHNESS FACTORS FOR PIPES 

 

                                     Roughness      Roughness 

 Material      factor ()   Material  factor () 

 

                 Riveted steel    0.001-0.01   Galvanized iron 0.0002 

 Concrete      0.0003-0.003  Asphalted cast iron 0.001 

 Wood staves    0.0002-0.003  Commercial steel 0.00005 

 Cast iron      0.0003   Drawn tubing  Smooth 

 

 

EXAMPLE 3.10. Pressure drop in a pipe 

Calculate the pressure drop along 170 m of 5cm diameter horizontal steel pipe through which 

olive oil at 20oC is flowing at the rate of 0.1m3 min-1. 

 

  Diameter of pipe = 0.05 m 

  Area of cross-section A  = (/4)D2 

       = /4 x (0.05)2 

     = 1.96 x 10-3m2 

 

From Appendix 4, 

 Viscosity of olive oil at 20oC  = 84 x 10-3 N s m-2 

 Density of olive oil   = 910kgm-3 

                             Velocity  = (0.1 x 1/60)/(1.96 x 10-3) = 0.85ms-1  

 

Now           (Re)  = (Dv/µ) 

 

                                                =  [(0.05 x 0.85 x 910)/(84 x 10-3)] 

                                            =  460 

 



so that the flow is streamline,  and from Fig. 3.8,  for (Re) = 460 

 

                           f = 0.03. 

 

Alternatively for streamline flow from (3.18), f = 16/(Re)  = 16/460 = 0.03 as before. 

 

And so the pressure drop in 170 m, from eqn. (3.17) 

     ΔPf   = (4fv2/2) x (L/D) 

                                               = (4 x 0.03 x 910 x (0.85)2 x 1/2) x (170 /0.05) 

                                                  =  1.34 x 105Pa 

                                                  =   l34kPa. 

 

 

Energy Losses in Bends and Fittings 

 

When the direction of flow is altered or distorted, as when the fluid is flowing round bends in the 

pipe or through fittings of varying cross-section, energy losses occur which are not recovered. 

This energy is dissipated in eddies and additional turbulence and finally lost in the form of heat. 

However, this energy must be supplied if the fluid is to be maintained in motion, in the same 

way, as energy must be provided to overcome friction. Losses in fittings have been found, as 

might be expected, to be proportional to the velocity head of the fluid flowing. In some cases the 

magnitude of the losses can be calculated but more often they are best found from tabulated 

values based largely on experimental results. The energy loss is expressed in the general form, 

  

                            Ef = kv2/2       (3.20) 

where k has to be found for the particular fitting. Values of this constant k for some fittings are 

given in Table 3.2. 

 

      TABLE 3.2 

FRICTION LOSS FACTORS IN FITTINGS 

 

                                                                                k 

                                Valves, fully open:  

                      gate   0.13 

                                                      globe   6.0 

                                                      angle   3.0 

                                 Elbows:  

                     90ostandard   0.74 

  medium sweep  0.5 

                                                     long radius   0.25 

                                                     square   1.5 

                                Tee, used as elbow   1.5 

                                Tee, straight through   0.5 

                                Entrance, large tank to pipe:   

                                                      sharp   0.5 

                                                      rounded   0.05 



 

 

Energy is also lost at sudden changes in pipe cross-section. At a sudden enlargement the loss has 

been shown to be equal to: 

 

   Ef = (v1 - v2)
2 /2     (3.21) 

 

For a sudden contraction 

         Ef = kv2
2 /2                 (3.22) 

 

where v1 is the velocity upstream of the change in section and v2 is the velocity downstream of 

the change in pipe diameter from D1 to D2. 

 

The coefficient k in eqn. (3.22) depends upon the ratio of the pipe diameters (D2 /D1) as given in 

Table 3.3. 

TABLE 3.3 

 

LOSS FACTORS IN CONTRACTIONS 

 

   D2 /D1 0.1          0.3          0.5          0.7          0.9 

   k 0.36 0.31 0.22       0.11        0.02 

 

 

Pressure Drop through Equipment 

 

Fluids sometimes have to be passed through beds of packed solids; for example in the air drying 

of granular materials, hot air may be passed upward through a bed of the material. The pressure 

drop resulting is not easy to calculate, even if the properties of the solids in the bed are well 

known. It is generally necessary, for accurate pressure-drop information, to make experimental 

measurements. 

 

A similar difficulty arises in the calculation of pressure drops through equipment such as banks 

of tubes in heat exchangers. An equation of the general form of eqn. (3.20) will hold in most 

cases, but values for k will have to be obtained from experimental results. Useful correlations for 

particular cases may be found in books on fluid flow and from works such as Perry (1997) and 

McAdams (1954). 

 

 

Equivalent Lengths of Pipe 

 

In some applications, it is convenient to calculate pressure drops in fittings from added 

equivalent lengths of straight pipe, rather than directly in terms of velocity heads or velocity 

pressures when making pipe-flow calculations. This means that a fictitious length of straight pipe 

is added to the actual length, such that friction due to the fictitious pipe gives rise to the same 

loss as that which would arise from the fitting under consideration. In this way various fittings, 

for example bends and elbows, are simply equated to equivalent lengths of pipe and the total 



friction losses computed from the total pipe length, actual plus fictitious. As Ef in eqn. (3.20) is 

equal to Ef in eqn. (3.17), k can therefore be replaced by 4fL/D where L is the length of pipe (of 

diameter D) equivalent to the fitting. 

 

 

Compressibility Effects for Gases 

 

The equations so far have all been applied on the assumption that the fluid flowing was incom-

pressible, that is its density remained unchanged through the flow process. This is true for liquids 

under normal circumstances and it is also frequently true for gases. Where gases are passed 

through equipment such as dryers, ducting, etc., the pressures and the pressure drops are 

generally only of the order of a few centimetres of water and under these conditions 

compressibility effects can normally be ignored. 

 

 

Calculation of Pressure Drops in Flow Systems 

 

From the previous discussion, it can be seen that in many practical cases of flow through 

equipment, the calculation of pressure drops and of power requirements is not simple, nor is it 

amenable to analytical solutions. Estimates can, however, be made and useful generalizations 

are: 

(1) Pressure drops through equipment are in general proportional to velocity heads, or  

pressures; in other words, they are proportional to the square of the velocity. 

(2) Power requirements are proportional to the product of the pressure drop and the mass rate of 

flow, which is to the cube of the velocity,  

  v2 x Av =Av3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



SUMMARY 

 

 

1. The static pressure in a fluid, at a depth Z, is given by: 

 

  P = Z g 

          

   taking the pressure at the fluid surface as datum. 

 

2. Fluid flow problems can often be solved by application of mass and energy balances. 

 

3. The continuity equation, which expresses the mass balance for flow of incompressible                       

                fluids is: 

  A1v1 = A2v2 

 

4. The Bernouilli equation expresses the energy balance for fluid flow: 

 

  Z1g + v1
2/2 + P1/1 = Z2 g + v2

2/2 + P2/2 

 

  Friction and other energy terms can be inserted where necessary. 

 

5. The dimensionless Reynolds number (Re) characterizes fluid flow, where 

 

  (Re) = (Dv/µ) 

 

For  (Re) < 2100, flow is streamline, for (Re)> 4000 flow is turbulent.  

Between 2100 and 4000 the flow is transitional. 

 

6.       Friction energy loss in pipes is expressed by the equation: 

 

            Ef = (4fv2/2) x (L/D) 

 

 and pressure drop in pipes: 

 

              ΔP = (4fv2/2) x (L/D) 

 

 

PROBLEMS 

 

 

1. In an evaporator, the internal pressure is read by means of a U-tube containing a liquid 

hydrocarbon of specific gravity 0.74. If on such a manometer the pressure is found to be below 

atmospheric by 83cm, calculate (a) the vacuum in the evaporator and (b) estimate the boiling 

temperature of water in the evaporator by using the steam tables in Appendix 8. 

  ((a) 6.025kPa, absolute pressure 95kPa (b) 98.1oC) 



 

2. Estimate the power required to pump milk at 20oC at 2.7 ms-1 through a 4cm diameter steel 

tube that is 130m long, including the kinetic energy and friction energy. 

  (297.05 Js-1 = 0.40hp) 

 

3. A 22% sodium chloride solution is to be pumped up from a feed tank into a header tank at the 

top of a building. If the feed tank is 40m lower than the header and the pipe is 1.5cm in 

diameter, find (a) the velocity head of the solution flowing in the pipe, and (b) the power 

required to pump the solution at a rate of 8.1 cubic metres per hour. Assume that the solution 

is at10oC, pipeline losses can be ignored, the pump is 68 % efficient, and that the density of the 

sodium chloride solution is 1160kgm-3. 

  ((a) 8.2m (b) 2.42hp) 

  

4. It is desired to design a cooler in which the tubes are 4cm diameter, to cool 10,000kg of milk 

per hour from 20oC to 3oC. Calculate how many tubes would be needed in parallel to give a 

Reynolds number of 4000. 

  (11 tubes) 

 

5. Soyabean oil is to be pumped from a storage tank to a processing vessel. The distance is 148m 

and included in the pipeline are six right-angle bends, two gate valves and one globe valve. If 

the processing vessel is 3m lower than the storage tank, estimate the power required to pump 

the oil at 20oC, at the rate of 20 tonnes per hour through the 5cm diameter pipe assuming the 

pump is 70% efficient. 

  (41hp) 

 

6. In the design of an air dryer to operate at 80oC, the fan is required to deliver 100 cubic metres 

per minute in a ring duct of constant rectangular cross-section 0.6m by 1.4m. The fan 

characteristic is such that this delivery will be achieved so long as the pressure drop round the 

circuit is not greater than 2cm of water. Determine whether the fan will be suitable if the 

circuit consists essentially of four right-angle bends of long radius, a pressure drop equivalent 

to four velocity heads in the bed of material and one equivalent to 1.2 velocity heads in the coil 

heater. Assume density of air is 1.00kgm -3. 

  (Zwater  = 0.124 cm, < 2cm of water) 

 

 


